
38 The Delphi Magazine Issue 27

Beating the System:
EXE Sniffing, The Story Continues...
by Dave Jewell

You may remember that in last
month’s column I presented a

little utility that could be used to
determine the DLLs (and in the
case of Delphi 3 executables, the
packages) required to run a par-
ticular application. At the time, I
thought that was pretty much the
end of the story. However, not long
after I wrote that article I decided
to install the latest version of
Merlin onto my PC. Merlin, in case
you haven’t come across it before,
is a set of Delphi add-ons which will
integrate into 32-bit versions of the
Delphi IDE [See also Brian Long’s
article on writing Delphi 3 add-ins in
this issue. Editor]. Merlin gives you
access to a number of new produc-
tivity aids and file viewers from
within the IDE and even provides a
means of accessing these add-ons
(the proper name is Merlin Wiz-
ards) directly from the Windows
shell. This means that, for exam-
ple, you can browse the resources
inside an EXE file simply by right-
clicking it from the Explorer and
then selecting Resource Explorer
from the popup menu. If you
haven’t tried Merlin, I heartily rec-
ommend it. You can download a
shareware version from the Merlin
site at www.boots.com/merlin.

OK, so what’s this got to do with
last month’s column? Well, as I was
browsing through the Merlin Wiz-
ards, I was fascinated by the capa-
bilities of the Executable Viewer
wizard which is capable of showing
not only the packages and DLLs
required by a particular program,
but even shows a list of units com-
piled into the executable! For
example, take a look at Figure 1,
which shows some of the 205 units
compiled into the Delphi 3.0 IDE.

It should be obvious that being
able to see the units linked into an
application is potentially very
useful. Suppose you discover that
one of your tried and trusted units

➤ Figure 1: The Executable
Viewer Wizard showing some
of the 205 units compiled into
the Delphi 3 IDE

has a rare but fatal bug in it. You fix
the unit, but you can’t remember
which of your applications uses it.
Or maybe you work in an environ-
ment where it’s absolutely essen-
tial to know that every piece of
code linked into a product has
been purchased legitimately.

If you were feeling adventurous,
you could take the file-searching
code that I discussed last month,
merge it with the code I’m present-
ing here, and thus come up with a
utility that searches all Delphi

executables on your hard disk to
see if they were linked with a par-
ticular unit.

In the end, curiosity got the
better of me and I did a little ‘inve-
stigative journalism’ in an attempt
to figure out how the Merlin code
worked its magic. The answer
turned out to be relatively straight-
forward. If you have access to the
Delphi 3.0 VCL source code, go
into the \SOURCE\RTL\SYS\ direc-
tory and open SYSUTILS.PAS. In
there (line 5706, or thereabouts)
you’ll see the declaration for a set
of data structures that define a
‘package info’ resource. Whenever
you compile an application or
package that requires other pack-
ages, this special resource gets
generated, and it contains a lot of
interesting information.

Introducing The
PACKAGEINFO Resource
What’s the idea behind this special
package info resource? Essen-
tially, it forms a fundamental part
of the run-time support for imple-
menting packages in Delphi 3.0.
When you run an application that
uses packages, the run-time
library examines this resource in
order to determine which units are
contained within the program, and
what needs to be linked in from
other packages. The package info
resource also exists in packages
themselves (DPL files) and lists
what units are contained within a
specific package, as well as what
other packages are required by this
package. The package info
resource corresponds to a
resource named PACKAGEINFO of
type RT_RCDATA and it’s generated
by the compiler when you compile
an application or package.

Listing 1 is my first attempt at
writing a program to examine the
contents of a given package
resource. Unlike last month’s

November 1997 The Delphi Magazine 39

➤ Figure 2: My first attempt at a PACKAGEINFO resource explorer

effort, this code is 32-bit only.
That’s because it uses a package-
specific routine that wasn’t imple-
mented in previous versions of
Delphi, more on that in a moment.
Also, bear in mind that, for reasons
of space, this isn’t a complete code
listing. I’ve removed the Format-
PathToFit routine because this
code is almost exactly the same as
it was last month, repeating it
would be a waste of space. There’s
one minor change though: because
we’re now in 32-bit land, we can’t
directly assign to byte zero of a
string, so you’ll need to find the
offending piece of code and
replace it with this:

if Idx > 0 then
SetLength(Name, Idx-1);

Don’t worry if you haven’t got last
month’s issue: the complete code
is included on this month’s disk.
You can see the program running
in Figure 2. It’s not as pretty as the
Merlin EXE file viewer, but it makes
the point that all the information
on linked-in units is there for the
taking. Assuming, of course, that
the executable was compiled with
Delphi 3!

So how does the code work? The
Button1Click routine is the meat of
this program. Unlike last time, I
haven’t gone down the route of
encapsulating everything into a
callable class library, because

you’ll undoubtedly have your own
ideas about how you want to inte-
grate your code with last month’s
offering. Once we’ve got a filename
from the TOpenDialog component,
the fun starts when we call the
LoadLibrary routine to get a
module handle to the executable.
Despite the name of this API call, it
will actually give us a module
handle for an executable file as well
as for a DLL.

I believe this wasn’t the case
with 16-bit Windows, but now you
can pass the name of any valid
32-bit executable (EXE or DLL) to
the LoadLibrary routine.

Because this is an API call rather
than a Delphi call, no exception
will be generated if the call fails.
Instead, the routine will quietly
return a module handle of zero.
What this most likely means is that
the specified file couldn’t be found,
or it wasn’t a Win32 executable. If
that happens, then the routine qui-
etly exits. The real key to the
program’s functionality is in the
call to GetPackageInfo, a new rou-
tine in the Delphi 3 SYSUTILS unit.
This routine takes the supplied
module handle and searches the
module for the aforementioned
PACKAGEINFO resource, calling the

➤ Listing 1

unit PackPeek;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls;

type
TForm1 = class(TForm)
OpenDialog: TOpenDialog;
CurrentFile: TLabel;
Button1: TButton;
Bevel1: TBevel;
UnitList: TListBox;
Label1: TLabel;
PackageList: TListBox;
Label2: TLabel;
procedure Button1Click(Sender: TObject);

private
public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
procedure PackageCallback (const ModuleName: string;
NameType: TNameType; Flags: Byte; Param: TForm1);

begin
with Param do begin
if NameType = ntContainsUnit then
UnitList.Items.Add (ModuleName)

else

PackageList.Items.Add (ModuleName);
end;

end;
procedure TForm1.Button1Click (Sender: TObject);
var
hLib: hModule;
PackageFlags: Integer;

begin
if OpenDialog.Execute then begin
UnitList.Clear;
PackageList.Clear;
CurrentFile.Caption := FormatPathToFit(
OpenDialog.FileName, Canvas, CurrentFile.Width);

hLib := LoadLibrary (PChar (OpenDialog.FileName));
if hLib <> 0 then try
{ If we get here, it's a 32-bit executable }
try
GetPackageInfo (hLib, Self, PackageFlags,
@PackageCallback);

except
{ If executable has no PackageInfo resource,
just bow out }
Exit;

end;
finally
FreeLibrary (hLib);

end;
end;

end;
end.

40 The Delphi Magazine Issue 27

application-supplied enumeration
routine (in this case called Pack-
ageCallback) for every entity con-
tained in the resource. Since
GetPackageInfo is a Delphi routine,
it does generate an exception if it
fails, which it will do if the executa-
ble in question doesn’t contain a
PACKAGEINFO resource. Possible
exceptions are trapped by a try-
except clause whereupon the rou-
tine simply exits leaving the two
form listboxes empty.

These two listboxes get filled by
the PackageCallback routine.
Because we’ve passed Self as the
second parameter to GetPackage-
Info, we can recover a pointer to
the form as the final parameter to

the enumeration routine. Using
this, we just use NameType to deter-
mine whether we’re being passed a
package name or a unit name, and
add the passed string to the appro-
priate listbox. See the Delphi 3
documentation on GetPackageInfo
for more details.

Killing Two Birds
With One Stone
If you look at the PackageCallback
routine, you’ll see that it takes a
Byte parameter called Flags. In the
‘Mark One’ version of this soft-
ware, we haven’t taken any notice
of this parameter, but it actually
contains some useful information.
When NameType indicates that a
required package is being enumer-
ated, then the Flags parameter is

zero, but if a unit is being enumer-
ated, then the Flags parameter
contains interesting information
such as whether this is the main
unit, and whether the $WEAKPACK-
AGEUNIT flag was used when
compiling this particular code.

Although it would be very easy
to modify the existing PackageCall-
back routine to make use of the
Flags byte, I’m going to take a dif-
ferent approach. Rather than con-
tinuing to call the GetPackageInfo
routine, we’ll dispense with it and
take responsibility for directly
loading the PACKAGEINFO resource,
and parsing it ourselves. The
reason I’m doing things this way is
because I want to show you how
easy it is to access 32-bit resources
contained in another file. Several

➤ Listing 2

unit PackPeek;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls;

type
TForm1 = class(TForm)
OpenDialog: TOpenDialog;
CurrentFile: TLabel;
Button1: TButton;
Panel1: TPanel;
MainUnit: TLabel;
PackageUnit: TLabel;
WeakPackageUnit: TLabel;
ImplicitImport: TLabel;
Label1: TLabel;
UnitList: TListBox;
Panel2: TPanel;
PackageList: TListBox;
Label2: TLabel;
Panel3: TPanel;
NeverBuild: TLabel;
DesignTime: TLabel;
RunTime: TLabel;
procedure Button1Click(Sender: TObject);
procedure UnitListClick(Sender: TObject);

private
public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
function BoolCaption (Flags, Mask: Byte; const RootCaption:
ShortString): ShortString;
begin
Result := RootCaption + ': ';
if (Flags and Mask) <> 0 then
Result := Result + 'Yes'

else
Result := Result + 'No';

end;
procedure TForm1.Button1Click (Sender: TObject);
var
hLib: hModule;
rs: TResourceStream;
UnitFlags: Byte;
Idx, PackageFlags, ContainsCount, RequiresCount: Integer;
function rsReadByte: Byte;
begin
rs.Read (Result, sizeof (Result));

end;
function rsReadInteger: Integer;
begin
rs.Read (Result, sizeof (Result));

end;
function rsReadString: ShortString;
var Ch: Char;
begin
Result := '';
repeat
Ch := Char (rsReadByte);
if Ch <> #0 then
Result := Result + Ch;

until Ch = #0;
end;

begin
if OpenDialog.Execute then begin
UnitList.Clear;
PackageList.Clear;
CurrentFile.Caption := FormatPathToFit(
OpenDialog.FileName, Canvas, CurrentFile.Width);

hLib := LoadLibrary(PChar(OpenDialog.FileName));
if hLib <> 0 then try
{ If we get here, it's a 32-bit executable }
try
rs := TResourceStream.Create (hLib, 'PACKAGEINFO',
rt_rCData);

except
{ If executable has no PackageInfo resource,
just bow out }

Exit;
end;
{ Ok, we've got resource stream, now interpret data }
PackageFlags := rsReadInteger;
NeverBuild.Caption :=
BoolCaption (PackageFlags, 1, 'Never-Build');

DesignTime.Caption :=
BoolCaption (PackageFlags, 2, 'Design-Time');

RunTime.Caption :=
BoolCaption (PackageFlags, 4, 'Run-Time');

RequiresCount := rsReadInteger;
if RequiresCount <> 0 then
for Idx := 0 to RequiresCount - 1 do begin
rsReadByte;
PackageList.Items.Add (rsReadString);

end;
ContainsCount := rsReadInteger;
if ContainsCount <> 0 then begin
for Idx := 0 to ContainsCount - 1 do begin
UnitFlags := rsReadByte;
rsReadByte;
UnitList.Items.AddObject(rsReadString,
TObject(UnitFlags));

end;
UnitList.ItemIndex := 0;
UnitListClick (Self);

end;
rs.Free;

finally
FreeLibrary (hLib);

end;
end;

end;
procedure TForm1.UnitListClick(Sender: TObject);
var Flags: Byte;
begin
if UnitList.ItemIndex <> -1 then begin
Flags :=
Byte(UnitList.Items.Objects[UnitList.ItemIndex]);

MainUnit.Caption := BoolCaption(Flags, 1, 'Main Unit');
PackageUnit.Caption := BoolCaption(Flags, 2,
'Package unit (DPK source)');

WeakpackageUnit.Caption :=
BoolCaption (Flags, 4, '$WEAKPACKAGE directive');

ImplicitImport.Caption :=
BoolCaption (Flags, 16, 'Implicitly Imported');

end;
end;

November 1997 The Delphi Magazine 41

months ago, I showed you how to
do this with 16-bit resources, but I
never got around to showing how it
works with 32-bit resources. It
turns out that (thanks to some
extensions to the Win32 API, and
some nice VCL functionality) it’s
very much easier to “get at” 32-bit
resources than it is to work with
16-bit ones. By writing the Mark
Two version of our package info
browser in this way, I can kill two
birds with one stone.

The revised code is shown in
Listing 2. As before, I’ve removed
the FormatPathToFit routine for the
sake of brevity. This time round,
the Button1Click routine is quite a
bit longer because of the additional
work involved. As before, we get a
new filename from the user, clear
any needed list boxes and then call
LoadLibrary to get a module handle
for the specified file.

That’s where the similarity ends.
Having got a module handle, we
can make use of a special VCL
class, TResourceStream, to open a
stream associated with a particu-
lar resource in the designated
module. We do this by specifying
the module handle, the name of the
resource and the resource type.
You may remember from our origi-
nal discussion of resources that a
resource name or resource type
can be specified either as a string,
or as a numeric value. If you want
to use a numeric value, then you
must cast it to a PChar before
passing to TResourceStream.Create.
In fact, that’s essentially what the
pre-defined rt_RCData value does.
Bear in mind that this function will
throw an exception if no resource
of the specified name and type can
be found, so we need to add some
code to handle the exception, in
this case simply by “eating” the
exception and bowing out
gracefully.

At this point, we’ve got a stream.
Because TResourceStream is
derived from TStream, you can do
all the usual stream-based stuff
with it, except that, of course,
you’re dealing with some other
application’s resource data
instead of just an ordinary file.
Before you ask: yes, it would be
great if you could use this nice

stream-based interface to modify
an existing resource but, no, you
can’t! As a matter of fact, there is a
TResourceStream.Write method,
but if you call it, you’ll just trigger
an EStreamError exception. At the
Windows API level, Microsoft have
added a number of routines which
enable an application to add,
delete or modify resources in
another executable, but, at the
present time, Borland haven’t
added the necessary code to the
TResourceStream class. Maybe this
would be a nice project for a future
edition of Beating The System, but
no promises!

Hint: If you want to do the job
yourself, take a look at the Win32
API information on UpdateResource,
BeginUpdateResource and EndUpda-
teResource. The simplest approach
would be to cache any data written
to the TResourceStream, marking
the stream as ‘dirty.’ At the time
the stream is closed, the code
could do the necessary updating of
the file in question.

Before we can make sense of the
resource data, we have to know the
format of the resource. In the case
of PACKAGEINFO, this is quite
straightforward, because Borland
have thoughtfully provided all the
necessary information in the
source code for the Delphi 3 SYSU-
TILS unit. The resource starts off
with 32 bits of flag information that
describe certain characteristics of
the package, or application. These
flags indicate whether the package
uses explicit rebuild, whether the
package can be used at design
time, and whether or not it’s a run-
time only package. The complete
set of package flags (taken from the
SYSUTILS unit) is given below:

{ Package Info flags }
pfNeverBuild = $00000001;
pfDesignOnly = $00000002;
pfRunOnly = $00000004;
pfModuleTypeMask = $C0000000;
pfExeModule = $00000000;
pfPackageModule = $40000000;
pfLibraryModule = $80000000;

This 32-bit flag information is
immediately followed by a 32-bit
count of the number of packages
required by this package. As far as I

can tell, if the PACKAGEINFO resource
is inside an application (EXE file),
then this count is always zero.
That’s because the import infor-
mation in the PE file header (the
stuff we looked at last month) pro-
vides all the needed information
on what packages are required by
the application at run-time. How-
ever, if the PACKAGEINFO resource is
inside a package (DPL file), then
the count will indicate what addi-
tional packages are required by
this package.

Immediately following the
required package count is an array
of data structures, one for each of
the required packages. This data
structure is very simple and com-
prises a single-byte hash code,
followed by the C-style (zero-
terminated) name of a particular
package. The hash code is used by
the Delphi run-time library to dis-
tinguish between different pack-
ages without having to perform
name comparisons.

Immediately following these
data structures is another 32-bit
count, this time indicating the
number of units which are con-
tained within the application or
package. As before, this is followed
by an array of data structures, one
for each contained unit. This time,
the data structure comprises a
flags byte, another hash code
(with a similar meaning to the per-
package hash code mentioned ear-
lier) and a C-style name for each
unit.

The flags byte may contain a
combination of the bit flags given
below. Again, these are taken from
the SYSUNITS unit:

{ Unit info flags }
ufMainUnit = $01;
ufPackageUnit = $02;
ufWeakUnit = $04;
ufOrgWeakUnit = $08;
ufImplicitUnit = $10;

Armed with all the above informa-
tion, we can now write code to
parse the PACKAGEINFO resource for
ourselves. You can see that I’ve
written three small nested func-
tions, rsReadByte, rsReadInteger
and rsReadString, which read
information from the previously

42 The Delphi Magazine Issue 27

➤ Figure 3: Here's the all-singin', all-dancin', Mark 2 version.
I'm looking at one of the run-time only DPL files installed in my
Windows\System directory. You can see that it, in turn, depends
on Raize Components.

➤ Listing 3

opened resource stream. Using
these functions, the Button1Click
routine reads the package
resource’s flags information and
then calls a small helper routine,
BoolCaption to set up the captions
of three TLabel controls. Next, it
reads the list of required packages
and adds the name of each package
to the PackageList list box. Note
that this code discards the hash
code because it’s not really of any
use to us at this point. Similarly,

the code then reads the list of con-
tained units, adding the name of
each unit to the UnitList list box.
For each unit name that’s added,
the corresponding flag byte is
added at the same time by coercing
it to a TObject.

The UnitListClick routine is
called in response to a click on the
UnitList list box. Each time the
selected unit changes, the flag byte
for the selected unit is retrieved
from the Objects list and then the

BoolCaption routine is called to
update the various ‘per-unit’
TLabel items. See Figure 3 for the
overall result.

Resource Snooping
For Profit And Pleasure
I wouldn’t want to leave this sub-
ject without emphasising that
many of the Windows API standard
resource-handling routines will
work just as well on someone
else’s executable as they will when
accessing resources within your
own application: the key is to
retrieve a module handle for the
file of interest. To illustrate the
point, take a look at the code
shown in Listing 3. This is a small
program that opens the Delphi 3.0
IDE executable, reads all the icons
from the file and loads them into a
TImageList control. The various
icons are then displayed in a
TListView, the result being as
shown in Figure 4. This is a very
simple program and it assumes
that Delphi is installed into the
directory shown in the code list-
ing. If it isn’t, then the results won’t
be terribly impressive!

Simple as it is, it demonstrates
how easy it is to access resources
outside your own code. Instead of
loading the icons into an image list,
it would have been just as simple
to call the SaveToFile method on
the TIcon object, thus making a
permanent copy of each retrieved
icon.

unit uicon;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ComCtrls, StdCtrls;

type
TForm1 = class(TForm)
ListView1: TListView;
ImageList1: TImageList;
procedure FormCreate(Sender: TObject);

private
public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
const
IconNames: array [0..28] of PChar = (
'MainIcon', 'MainIconDCU', 'MainIconDFM',
'MainIconDPK', 'MainIconDPR', 'MainIconPAS',
'NewActiveX', 'NewApp', 'NewComp',
'NewData', 'NewDLL', 'NewForm',
'NewPackage', 'NewRemoteData', 'NewText',
'NewThread', 'NewUnit', 'Project',
'ProjectIcon', 'RepBothForm', 'RepMainForm',
'RepNewForm', 'RepNewProject', 'XAuto',
'XCtrl', 'XForm', 'XLib',
'XProp', 'XTLib');

procedure TForm1.FormCreate(Sender: TObject);
var Idx: integer;

hLib: hModule;
procedure AddIcon (IconName: PChar);
var Icon: TIcon;

Idx: Integer;
ListItem: TListItem;

begin
Icon := TIcon.Create;
try
Icon.Handle := LoadIcon (hLib, IconName);
Idx := ImageList1.AddIcon (Icon);
ListItem := ListView1.Items.Add;
ListItem.Caption := IconName;
ListItem.ImageIndex := Idx;

finally
Icon.Free;

end;
end;
begin
hLib := LoadLibrary('c:\delphi 3.0\bin\delphi32.exe');
if hLib <> 0 then try
for Idx := Low(IconNames) to High(IconNames) do
AddIcon (IconNames [Idx]);

finally
FreeLibrary (hLib);

end;
end;
end.

November 1997 The Delphi Magazine 43

➤ Figure 4: This small demo shows how easy it is to access the
resources inside another file.

Of course, there’s one difficulty
here, which I’ve carefully glossed
over! Specifically, how do you tell
programmatically what icons (or
other resources, for that matter)
are contained within a particular
file? When I wrote the code for List-
ing 3, I used a resource editing pro-
gram to peek inside the Delphi IDE,
jot down the names of all the icon
resources found there, and then
use these names as the basis for
my IconNames array. It would have
been a lot handier if one could just
open an arbitrary file, and access
whatever resources it might con-
tain. Surprisingly, it’s quite easy to
do this under Win32. There are two
routines you need. Firstly, you use
EnumResourceTypes to enumerate all
the resources contained within a
particular file. Secondly, you use
EnumResourceNames to enumerate all

the individual resources of a par-
ticular type. I haven’t done this for
you, but you should find it very
easy to make the necessary
changes to Listing 3. Do remember,
though, that you need to work with
RT_GROUP_ICON resources and not
the lower-level RT_ICON type.

All three of the sample programs
developed in this month’s code are
included on the disk, but I’ve
compiled the executables to use
packages so as to minimise space.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
Dave@HexManiac.com.

	Introducing The PACKAGEINFO Resource
	Killing Two Birds With One Stone
	Resource Snooping For Profit And Pleasure

